Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance.
نویسندگان
چکیده
In vivo 13C and 31P nuclear magnetic resonance techniques were used to study propionate metabolism by activated sludge in enhanced biological phosphorus removal systems. The fate of label supplied in [3-13C]propionate was monitored in living cells subjected to anaerobic/aerobic cycles. During the anaerobic phase, propionate was converted to polyhydroxyalkanoates (PHA) with the following monomer composition: hydroxyvalerate, 74.2%; hydroxymethylvalerate, 16.9%; hydroxymethylbutyrate, 8.6%; and hydroxybutyrate, 0.3%. The isotopic enrichment in the different carbon atoms of hydroxyvalerate (HV) produced during the first anaerobic stage was determined: HV5, 59%; HV4, 5.0%; HV3, 1.1%; HV2, 3.5%; and HV1, 2.8%. A large proportion of the supplied label ended up on carbon C-5 of HV, directly derived from the pool of propionyl-coenzyme A (CoA), which is primarily labeled on C-3; useful information on the nature of operating metabolic pathways was provided by the extent of labeling on C-1, C-2, and C-4. The labeling pattern on C-1 and C-2 was explained by the conversion of propionyl-CoA to acetyl-CoA via succinyl-CoA and the left branch of the tricarboxylic acid cycle, which involves scrambling of label between the inner carbons of succinate. This constitutes solid evidence for the operation of succinate dehydrogenase under anaerobic conditions. The labeling in HV4 is explained by backflux from succinate to propionyl-CoA. The involvement of glycogen in the metabolism of propionate was also demonstrated; moreover, it was shown that the acetyl moiety to the synthesis of PHA was derived preferentially from glycogen. According to the proposed metabolic scheme, the decarboxylation of pyruvate is coupled to the production of hydrogen, and the missing reducing equivalents should be derived from a source other than glycogen metabolism.
منابع مشابه
Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli.
We have evaluated the use of [1,2-13C2]propionate for the analysis of propionic acid metabolism, based on the ability to distinguish between the methylcitrate and methylmalonate pathways. Studies using propionate-adapted Escherichia coli MG1655 cells were performed. Preservation of the 13C-13C-12C carbon skeleton in labeled alanine and alanine-containing peptides involved in cell wall recycling...
متن کاملMethylamine metabolism in Hansenula polymorpha: an in vivo 13C and 31P nuclear magnetic resonance study.
Methylamine uptake, oxidation, and assimilation were studied in Hansenula polymorpha, a methylotrophic yeast. The constitutive ammonia transport system was shown to be effective at accumulating methylamine within cells cultured with methylamine or ammonia as a nitrogen source. [13C]methylamine oxidation rates were measured in vivo in methylamine-adapted cells by 13C nuclear magnetic resonance a...
متن کاملBioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy.
Biosynthetically directed fractional 13C labeling of the proteinogenic amino acids is achieved by feeding a mixture of uniformly 13C-labeled and unlabeled carbon source compounds into a bioreaction network. Analysis of the resulting labeling pattern enables both a comprehensive characterization of the network topology and the determination of metabolic flux ratios. Attractive features with rega...
متن کاملMetabolic studies of estrogen- and tamoxifen-treated human breast cancer cells by nuclear magnetic resonance spectroscopy.
The effects of 17 beta-estradiol treatment versus tamoxifen on the metabolism of human breast cancer T47D-clone 11 cells were studied by noninvasive 31P and 13C nuclear magnetic resonance techniques. 31P nuclear magnetic resonance spectra revealed differences between estrogen and tamoxifen treated cells. The steady state content of phosphorylcholine and of the nucleoside diphosphates was higher...
متن کاملBiosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose.
Camptothecin derivatives are clinically used antitumor alkaloids that belong to monoterpenoid indole alkaloids. In this study, we investigated the biosynthetic pathway of camptothecin from [1-13C]glucose (Glc) by in silico and in vivo studies. The in silico study measured the incorporation of Glc into alkaloids using the Atomic Reconstruction of Metabolism software and predicted the labeling pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2003